

DU I3DC MODELISATION, PLANIFICATION ET IMPRESSION 3D EN CHIRURGIE

Objectifs de la formation

Cette formation pour objectif de proposer un enseignement théorique et pratique actualisé sur la modélisation, la planification et l'impression 3D à usage médical.

- Rappeler les fondamentaux des technologies d'impression 3D ainsi que la réglementation qui s'applique spécifiquement dans le domaine médical
- Transmettre les bases de l'utilisation de logiciels
- Permettre aux étudiants de planifier/simuler une intervention chirurgicale via des logiciels spécifiques
- Transférer les fichiers réalisés à une imprimante 3D

Compétences

- Connaître les modalités d'imagerie médicales compatible avec la modélisation 3D
- Connaître la réglementation qui s'applique en fonction du type d'objet imprimé mais également les contraintes quant à leur utilisation dans un établissement de santé
- Être capable d'utiliser les logiciels de segmentation et de modélisation virtuelle
- Être capable de réaliser une chirurgie virtuelle sur une modélisation 3D
- Être capable de modéliser un guide chirurgical à l'aide de logiciels spécifiques
- Être capable d'imprimer un objet 3D et de maitriser les étapes de finition post-impression
- Connaître les principales applications cliniques et pédagogiques de la technologie d'impression 3D

Déroulement de la formation

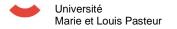
 Modalités: 3 sessions de 2.5 jours sur janvier, mars et mai: cours magistraux, travaux dirigés et travaux pratiques

Stage : néant

Période : janvier à maiLieu : Besancon

Durée : 1 année

Volume horaire enseignement : 50 heures


Programme

Module 1 du mercredi 7 janvier au vendredi 9 janvier 2026

- Accueil et introduction au DU I3DC
- Les différentes technologies d'impression 3D
- Formation à l'utilisation des imprimantes SLA et FDM
- Réglementation des dispositifs médicaux en Europe et notamment ceux réalisés par impression 3D
- Evaluation clinique des dispositifs médicaux réalisés par impression 3D
- Fonctionnalités et utilisation du logiciel Meshmixer
- Réaliser un modèle anatomique et concevoir un guide chirurgical avec des logiciels libres d'accès (InVesalius et Meshmixer)
- Concevoir un modèle anatomique avec des logiciels libres d'accès
- Impression des modèles anatomiques réalisés
- Imageries médicales compatibles avec l'impression 3D : modalités et spécificités
- Les différents matériaux d'impression 3D à usage médical
- Applications de l'impression 3D / planification virtuelle en neurochirurgie
- Post-traitement des impressions réalisées

• Module 2 du mercredi 11 mars au vendredi 13 mars 2026

- Impression 3D de DMs: stérilisation, réglementation et mise en place dans un établissement de santé
- Modalités de mise en place d'une plateforme d'impression 3D médicale au sein d'un établissement de santé : principes des marchés publiques et des appels d'offres pour l'achat des imprimantes et logiciels
- Développement d'une plateforme d'impression 3D à usage médical Le rôle d'une société d'accompagnement
- Impression 3D : la vision de l'ingénieur et les technologies de demain

- Présentation de l'activité de Materialise
- Présentation des logiciels Mimics InPrint et ProPlan CMF
- Segmentation à l'aide du logiciel Mimics InPrint
- Planification mandibulectomie interruptrice et reconstruction par lambeau de fibula
- Présentation de l'étape de conception des guides chirurgicaux
- Impression des modèles anatomique réalisés
- La bio-impression 3D, état des lieux et perspectives
- Applications de l'impression 3D pour les tissus tumoraux et vasculaires, spécificités en chirurgie pédiatrique
- Internalisation de l'impression 3D médicale hospitalières, retour d'expérience au CHU de Besançon
- Démarche qualité appliquée à l'impression 3D médicale
- Post-traitement des impressions réalisées

Module 3 du mercredi 20 mai au vendredi 22 mai 2026

- L'impression 3D comme outil pédagogique
- Concevoir un guide de coupe et pré-forage mandibulaire pour mandibulectomie interruptrice avec plaque de reconstruction avec des logiciels libres d'accès
- Impression des guides chirurgicaux réalisés
- Applications de l'impression 3D / planification virtuelle en chirurgie maxillo-faciale et stomatologie
- Application de l'impression 3D en orthodontie
- Post-traitement des impressions réalisées
- Planification d'une chirurgie orthognathique avec gouttières à l'aide du logiciel Mimics Enlight
- Visite de du plateau technique d'impression 3D de L'École nationale supérieure de mécanique et des microtechniques

Candidatures

Candidature sur la plateforme eCandidat de l'Université Marie et Louis Pasteur : https://scolarite.univ-fcomte.fr/ecandidat/ du 5 mai 2025 au 27 novembre 2025

Coût universitaire de la formation

175 € (pour tous, même si vous êtes déjà inscrit en DES, en Thèse...)

Coût pédagogique de la formation

Formation continue : 1500 €
Formation initiale : 750 €

Publics concernés

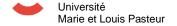
Internes en médecine, chirurgie et odontologie, médecins, chirurgiens et chirurgiens-dentistes en activité, étudiants et ingénieurs biomédicaux, vétérinaires

Modalité pédagogique

Présentiel

Modalités de validation

- Présence aux sessions obligatoires
- Épreuve écrite de 45min sous forme de QCM
- Examen pratique de 1h


Particularités de la formation : Pré-requis

Nécessité pour les étudiants d'être muni de leur PC lors des sessions de cours avec installation préalable des logiciels suivants :

- Meshmixer (http://www.meshmixer.com/download.html)
- InVesalius (https://invesalius.github.io/download.html)

Université co-habilitée

Aucune

Responsables pédagogiques

MEYER Christophe c3meyer@chu-besancon.fr LOUVRIER Aurélien alouvrier@chu-besancon.fr

Service Formation Continue Santé

fcsante@univ-fcomte.fr

SeFoC'Al (financement et prise en charge)

SIGILLO Gaëlle gaelle.sigillo@univ-fcomte.fr